金鋼狼與九頭蛇的再生傳說,人類也能斷肢再生?

為什麼研究「再生」

組織與器官如何啟動再生機制,至今人們仍然不了解。例如,當切斷蠑螈的手臂和手指,不同部位再生所費時間竟然相同,但為什麼?在中研院細胞與個體生物所,陳振輝團隊利用經由基因突變篩檢出來、失去再生能力的斑馬魚,來了解再生過程的分子機制,期待未來能幫助再生醫學的發展。
希臘神話九頭蛇的再生能力:砍了一個我,還有千千萬萬個我。圖│iStock
希臘神話九頭蛇的再生能力:砍了一個我,還有千千萬萬個我。
圖│iStock

奇蹟般的再生現象

在古代,希臘神話中的怪物九頭蛇,危害沼澤附近的生物,當與海格力斯大戰時,九頭蛇被砍斷頭顱後還可以不斷再生。在現代,X 戰警電影中的金鋼狼,也具有驚人的再生能力,傷口可以在短短幾秒內恢復。從這兩個故事看來,人類從古至今對於再生能力是既感恐懼又羨慕。

再生並非只存在傳說中,自然界也有奇蹟存在。例如,蠑螈雖然是低等的脊椎動物,但可以從被截斷的手臂切面,長出神經、骨頭、血管與肌肉,再生出完好的手臂。而斑馬魚和渦蟲,也都具有很強的再生能力。

蠑螈需花費 30~60 天才能再生一隻完好的手臂,不像金鋼狼那麼誇張,可以瞬間再生,但若能了解哪些關鍵會觸發再生機制,也許有一天人類也可以再生。

「所有人都對再生有興趣,並不是科學界才對再生研究感興趣!」在陳振輝的實驗室,正透過科學化的方法,以斑馬魚為研究對象,探索傷口修復和複雜組織再生過程中,細胞們如何運作。

找找看,能發現失去再生能力的基因突變斑馬魚嗎?被截斷的尾鰭是個指引。圖│研之有物
找找看,能發現失去再生能力的基因突變斑馬魚嗎?被截斷的尾鰭是個指引。
圖│研之有物

透過「斑馬魚」畫出「再生藍圖」

人類的肢幹受傷斷裂,傷口癒合後就形成斷肢,無法再生。但若是截斷斑馬魚尾鰭、用強光破壞視網膜、用細針攪爛一側的大腦,甚至剪斷脊椎這種極端方式,斑馬魚都可以完整再生這些複雜組織。

在脊椎再生的模式中,斑馬魚一開始會因缺乏神經連結而無法再游動,並躺在水缸底兩個禮拜,但待神經重新連結、表皮癒合後,斑馬魚又再次成為一尾活龍、游來游去。(註一)

陳振輝團隊試著想回答兩個問題:再生如何發生?再生機制為何會發生?

再生機制,涵蓋「表皮細胞、骨頭細胞、神經細胞、血管細胞」等運作,就像蓋一棟房子,需要不同材料、不同步驟進行。例如,殘肢上的細胞要移動、增生、分化產生新組織,同時也要跟舊組織溝通、整合,來讓新生的手臂或尾鰭具有正確的大小、形狀和功能。

陳振輝透過 Skinbow 這種多顏色細胞標誌技術,以不同顏色標記斑馬魚體內不同的細胞,觀察再生過程中細胞如何移動、如何分工合作,藉以建立一個三維空間裡,各式細胞如何互動、建構複雜組織的工程藍圖,並運用這個藍圖看看能否移轉到其他生物上實現,也蓋出名叫「再生」的房子。

經過 Skinbow 處理的斑馬魚鱗片,不同細胞被標記不同顏色,在顯微鏡下觀察如同冰淇淋甜筒上的七彩糖珠。圖│Chen et al., (2016). Multicolor cell barcoding technology for long-term surveillance of epithelial regeneration in zebrafish. Developmental Cell 36 (6), 668-680.
經過 Skinbow 處理的斑馬魚鱗片,不同細胞被標記不同顏色,在顯微鏡下觀察如同冰淇淋甜筒上的七彩糖珠。
圖│Chen et al., (2016). Multicolor cell barcoding technology for long-term surveillance of epithelial regeneration in zebrafish. Developmental Cell 36 (6), 668-680.

Skinbow:研究再生的繽紛驚喜

環顧陳振輝實驗室中色彩繽紛的照片,彷彿藝廊展覽。照片中所採用的 Skinbow 多顏色細胞標誌技術,點子來自於陳振輝在美國杜克大學醫學院的細胞生物學實驗室中,看到同事 Vikas Gupta 成功運用 Brainbow 多顏色細胞標誌技術,觀察斑馬魚心臟的發育與再生過程。(註二)

Brainbow 由 Jean Livet 於 2007 年時建立,當初是為了觀察老鼠的大腦神經(註三),其基本原理是利用基因重組的方式,隨機將紅綠藍三原色的螢光蛋白在個別細胞表現不同的數量,如此一來便能產生上百種顏色,標誌每一顆細胞,並且觀察每顆細胞的運作狀態。

結合「大腦」的實驗及「彩虹」般的色彩表現,這個以多種顏色標誌細胞的技術便稱為 Brainbow。

而陳振輝團隊轉化此技術,運用於觀察斑馬魚的「表皮細胞」於再生時的運作情況,並另名為 Skinbow ,經過多次嘗試,Skinbow 可用來標誌斑馬魚成魚的尾鰭、鱗片、眼球、甚至整隻仔魚的表皮細胞。

Skinbow:將紅、綠、藍(光的三原色)螢光蛋白標誌疊合之後,可以產生上百種不同顏色來標誌不同的表皮細胞,讓同個細胞在組織再生的過程中,能被長時間追蹤觀察。圖│研之有物
Skinbow:將紅、綠、藍(光的三原色)螢光蛋白標誌疊合之後,可以產生上百種不同顏色來標誌不同的表皮細胞,讓同個細胞在組織再生的過程中,能被長時間追蹤觀察。
圖│研之有物

在 Skinbow 多顏色細胞標誌下,可以觀察斑馬魚的表皮細胞,在面對不同的傷害情況下,如何集體反應、合作、再生,以恢復原來的組織構造。

例如,若想了解截斷斑馬魚的尾鰭後,細胞的移動方式是「沿著截斷面長出新細胞」,或是「舊組織的細胞會往截斷面移動」?透過 Skinbow 可以清楚看見,舊組織的表皮細胞會先移動到截斷面要增生的部份,然後才在原本的舊組織長出新的表皮細胞。

透過 Skinbow 看到斑馬魚被截斷的尾鰭上,「舊」組織的表皮細胞(以綠點為例),會往截斷處移動、修補,而非立即從截斷處長出「新」細胞。圖│研之有物(資料來源│陳振輝)
透過 Skinbow 看到斑馬魚被截斷的尾鰭上,「舊」組織的表皮細胞(以綠點為例),會往截斷處移動、修補,而非立即從截斷處長出「新」細胞。
圖│研之有物(資料來源│陳振輝)

為何是斑馬魚?蠑螈不行嗎?

陳振輝表示,斑馬魚作為模式生物已經有二十多年的歷史,科學家主要利用斑馬魚胚胎來研究脊椎動物的發育過程,累積了足夠的遺傳學基礎和研究方法。

另一個主要的原因是斑馬魚在高倍顯微鏡下較易觀察,光是在顯微鏡下觀察尾鰭再生的過程就要持續二十天,但蠑螈太大隻,要持續進行觀察較為困難,因此容易麻醉、方便長時間觀察是考量因素之一。生長週期也是另一關鍵,蠑螈的成長過程需要數年,斑馬魚只要三個月。

斑馬魚的體型小且扁平,麻醉後易於透過顯微鏡長時間觀察。圖│研之有物
斑馬魚的體型小且扁平,麻醉後易於透過顯微鏡長時間觀察。
圖│研之有物

在中研院細胞與個體生物學研究所地下室一樓,有著一間斑馬魚養殖場,一箱箱疊在一起的斑馬魚水族箱,不斷冒著泡泡,水族箱上頭仔細貼著說明標籤。

陳振輝指著尾鰭明顯少掉四分之一(黃圈處)的斑馬魚說:「這隻是尾鰭截斷之後,無法再生的魚。」圖│研之有物
陳振輝指著尾鰭明顯少掉四分之一(黃圈處)的斑馬魚說:「這隻是尾鰭截斷之後,無法再生的魚。」
圖│研之有物

我們將斑馬魚泡在誘發基因突變的藥水中,觀察哪隻斑馬魚在截斷尾鰭後變得「不會再生」,去找出是哪個基因出問題,這可能就是觸發再生的關鍵。

「目前實驗室已經在突變魚身上,找到一些影響再生反應的基因,這樣尋找的過程平均要花上一年半到兩年的時間。」陳振輝說,充滿著耐心。

如何將斑馬魚的再生,應用到人類身上?

陳振輝認為,再生機制的研究要植基於這些「很會再生」的「模式生物」,如果沒有利用這些生物,將很難建立複雜組織再生的模型。

而基礎研究所得到的結果,可以進一步在老鼠模式上面驗證,例如利用斑馬魚的再生機制去調控實驗老鼠的再生能力。(註四)

為什麼人類具有跟斑馬魚一樣的再生基因,卻無法再生?這關乎基因調控的狀況。

再生機制牽涉到兩個層面,第一是人類缺乏斑馬魚具有的特定再生基因;第二,則是基因調控的狀況。

例如,斑馬魚的基因 A 在受傷後會被活化,但人的基因 A 卻不會被活化,因此人類無法再生,這可能牽涉到基因的上游 DNA 序列的調控,而這會影響負責再生的基因表現。

至於其他魚類是否也具有再生能力?陳振輝表示,許多硬骨魚類都有。生物的再生能力,對繁衍優勢沒有直接的影響,因此生物可以在漫長的演化過程中獲得或失去再生能力。例如並非所有的渦蟲及蠑螈都會再生,部分譜系的渦蟲及蠑螈在演化過程中,也失去了再生複雜組織的能力。

人類敬畏又渴望再生的能力,但在演化過程中,大自然選擇性地讓部分物種保留再生的特權。陳振輝播放著已看過無數次的蠑螈再生斷肢的影片,驚嘆地說:「再看幾次還是會覺得這些動物怎麼這麼神奇,讓人不斷地想了解為什麼牠們可以有這樣的能力?」

2017-06-19

採訪編輯|王怡蓁
美術編輯|張語辰

延伸閱讀

訂閱電子報

立即訂閱研之有物電子報,一起探索這世界