PM2.5,指的是粒徑小於 2.5 微米的小顆粒,比我們的頭髮還細小,卻能傷人於無形,長期吸入可能引起過敏、氣喘、肺癌、心血管疾病。了解每日 PM2.5 濃度,能在生活中保護自己減少空污威脅。
在過去,臺灣空氣微型感測器尚未普及,想要知道當下空氣品質,必須仰賴全臺 76 個國家監測站(2017 年新增至 77 台)。然而,生活中處處存在汽機車、香爐、工廠等無數小型污染源,影響每時每地的 PM2.5 濃度,大型監測站無法即時反應各地情況。
「我要怎麼知道『當下』、『此刻』的空氣品質好不好?」陳伶志心生疑問,開啟長達 8 年的空氣盒子研發、推廣之路。

空氣盒子地圖:各地 PM2.5 即時濃度
資料來源|https://pm25.lass-net.org/GIS/voronoi/
什麼是空氣盒子?它跟傳統測站有什麼不一樣?
那時,我們就天馬行空給自己出題目:何不使用小型、便宜的空氣感測器,撒網式地多點取樣。即使準確性比不上專業儀器,但可以量取勝,利用大量數據發展新理論和演算法,另闢蹊徑來解釋、甚至預測空氣品質,這就是空氣盒子的起點。
目前空氣盒子已超過四千台,裝設在全台各地,每五分鐘回傳一筆資料 (全台灣的傳統測站共數十台,每小時只能產出一筆監測資料),資料量和回傳速度都不可同日而語,可供資料科學家分析 PM2.5 的分布與變化。

空氣盒子各階段 prototype。空氣盒子現在使用的感測器,是經過幾代的改良,才找到最好的感測器。感測原理是:利用 PM2.5 的物理性質,用雷射光照射這些微粒產生散射,進而計算 PM2.5 濃度,量測出來的結果一致性很高。
資料來源|陳伶志提供
不過,空氣盒子能夠有如今規模,還要歸因於它屬於「參與式感測系統」。生活中有許多問題,例如空污、塞車,被動地等待政府解決往往緩不濟急,並非政府效率太差,而是不知道問題真兇在哪裡,例如眼前的空污到底是霾害?還是有工廠偷偷排放廢氣?參與式感測系統以「自己的環境自己救」的概念出發,透過群眾自主觀察所得的大量數據,由專家分析找出問題癥結點,推動政府或相關單位採取行動、對症下藥!

參與式感測:透過群眾觀測、專家分析,由下而上解決問題。
圖說設計|林婷嫻、張語辰
便宜的小型感測器,數據會不會不準確?
後來我們轉而追求「一致性」,不強求感測器跟專業儀器測量數值完全一樣,只要這些感測器的數值可以穩定維持在同一個區間,可校正、可比較、可以看出趨勢變化。

環保署將空氣盒子架設在多個標準測站,比較兩者測到的 PM2.5 濃度。藍色代表空氣盒子、橘色代表環保署測站,兩者測得 PM2.5 濃度值雖不同,但有相似的趨勢變化。
資料來源│環境保護署空氣品質監測網
我們也重新思考研究的目的:不是用便宜的空氣盒子取代數百萬元的專業儀器,而是走一條以量取勝的道路,以大量便宜、但堪用的小型感測器組成綿密的監測網路,取得當下、此刻的空氣品質。
但相對的,空氣盒子的量測也容易受到局部環境變化影響、資料比較雜,分析前必須處理。比方說,有些空氣盒子 PM2.5 飆高是因為沙塵暴來襲,有些是因為有人在旁邊抽菸,後者屬於小範圍異常,必須想辦法排除。
如何辨別環境中的雜訊?PM2.5 飆高是因為沙塵暴,還是有人抽菸?
再來,假設空氣的擴散是緩慢的,同一台空氣盒子相近時間的感測數值也應該「一致」。如果某台空氣盒子的 PM 2.5 濃度突然劇烈變化,代表它可能發生異常。
因此,我們必須比較每台空氣盒子在鄰近區域以及相近時間內的一致性,定時給予評分,分數低代表這個空氣盒子的微世界(micro environment)跟別的不一樣,也許它裝在廟旁、裝在室內、有人在旁邊抽煙,或是感測器取風口裝反,讓灰塵進去出不來等等。
這個評分每 5 分鐘執行一次,分析過去 24 小時的資料,如果某個空氣盒子的評分低於標準,會把它標示為異常,資料就不會用來做後續的分析。
空氣盒子如何預測 PM2.5 濃度變化?
首先,我們設定只做 5 小時以內的預測,假設在這時間內氣候變化不會太大,暫且不考慮海風、陸風、大陸冷氣團等氣候變因,純粹使用資料科學方法,從過去的變化歷程預測未來數小時 PM 2.5 濃度。
一開始,我們以類神經網絡模型預測,準確性高、但運算速度太慢。因為每個感測器所處的環境不同,過去的歷史資料也不一樣,所以 4,000 台空氣盒子就要有 4,000 個預測模型。
經過多方嘗試,我們終於找到準確但又不會太慢的作法:先將 4,000 台機器,按照過去歷史資料或是地理位置等方式分群,在每一群中選擇一個具代表性的空氣盒子,以它的歷史資料做預測模型,再把預測模型套用到同群的其他空氣盒子上。以下是按照地理位置分群的做法:

上圖以地理位置將台中空氣盒子分群,(a)是分成 1 群,(b)是分成 4 群,(c)是分成 9 群,(d)是分成 16 群,在其中找一個具代表性的空氣盒子做預測模型,再套用到同群其他空氣盒子。結果發現,空氣盒子分群越多,運算速度變慢、但誤差變小。如果分成 16 群,可以發現運算速度變慢一些,但誤差降低許多。
圖片重製│林洵安
資料來源│陳伶志
如果是按照歷史資料來分群,想像一下,橫軸是時間、縱軸是 PM2.5 濃度,每個空氣盒子具有自己的濃度變化曲線,把曲線波動類似的空氣盒子分成一群,代表它們的模型特性是相似的。比方說,如果偵測到上下班有兩個波峰,代表這些空氣盒子可能裝在大馬路旁,因為尖峰時刻車流較多,造成空氣品質數值的波動。
空氣盒子可以解決哪些生活問題?
像我小孩七點半上學,可以訂閱學校附近的空氣盒子,定時在出門的時刻,以 Line 傳送學校附近的 PM 2.5 濃度,讓我決定要不要讓他戴口罩。又或者,我可以訂閱離家最近的空氣盒子,一超過特定濃度就發出訊息,來決定家裡要開窗戶或開空氣清淨機。

跟空氣盒子Line聊天機器人的聊天對話。
資料來源│陳伶志
空氣盒子的預測模型也很實用!例如:什麼時間可以出去跑步?畢竟跑步是為了健康,如果空氣很糟還出門,不就成了人體空氣清淨機?
於是我們嘗試用預測模型找出最健康的運動路線,做出 PM 2.5 最小曝露量的導航系統。你可以想像地圖是 x 軸和 y 軸,時間是 z 軸,地圖上每個地點、不同時間,皆有不同的 PM 2.5 濃度。我們將不同路線上、每個時間點所對應的 PM 2.5 濃度累加,預測出吸入最少 PM 2.5 的路徑。

用空氣盒子找出最健康的運動路線。以中研院到台北火車站為例,使用 Google 導航騎腳踏車的最短路徑是灰色路線,所需交通時間是 45 分鐘,計算出的 PM 2.5 曝露量分數 75.8(分數越高代表吸入越多 PM 2.5)。如果利用空氣盒子資料做分析,建議採用路線為藍色,它會引導你走河堤或避開大馬路,所以交通時間增加到 83 分鐘,但 PM 2.5 曝露量分數降低至 59.8。
資料來源│陳伶志
此外,生活中有許多空汙問題,很難知道問題真兇藏在哪裡,例如眼前的空污是霾害?還是有工廠偷偷排放廢氣?因為不肖業者常常利用各種取巧、偽裝來規避稽查,例如半夜偷排廢氣。空氣盒子可收集大量數據,經過機器學習找出汙染排放規律、可疑地區,幫助稽查員確定關鍵時機,人贓俱獲!
開發這些應用服務的靈感從哪來?
事實上,從 2013 年計畫開始到現在,有些空氣盒子已慢慢離線。原因不是參與者主動不要它了,而是時間一長,可能發生無線網路不穩、停電後沒有重新開機等等,參與者很難察覺。一開始,我還會呼籲大家常常檢查自己的空氣盒子,但是呼籲久了也怕被嫌煩。
因此我決定讓空氣盒子提供更貼心的生活服務,參與者可主動透過 Line 訂閱自己的空氣盒子,不僅可即時知道 PM 2.5 濃度,機器故障時也會收到通知提醒。
參與式感測不只「感測」要成功,「參與」也要成功,提高參與就要滿足大家發自內心的需求,提供有用的服務,回應大家的生活問題。
對空氣盒子未來有什麼規劃呢?
其次,增加與國外相關計畫與社群的連結。目前我們與美國芝加哥最大的智慧城市計畫「Array Of Things」合作,他們一開始佈建的感測器價格比較高,所以數量不多,希望與我們合作,利用微型感測器補足數量。韓國則與台灣購買微型感測器,佈建機器後請我們協助分析資料。此外,德國和泰國也都在洽談合作。

空氣盒子 PM2.5 感測網,延伸至世界各地。
資料來源│陳伶志
推動空氣盒子的過程,有沒有難忘的回憶?
那段時間也是最快樂的,因為你完全無法預期接下來會發生什麼事,每次好像走到一個盡頭,就蹦出一個力量把我們再往前推一點、再多做一點。就像有一句話說:
當你真心渴望某樣東西時,整個宇宙都會聯合起來幫助你完成。
此外,中研院在這過程也給我很大的自由,從 2013 年到 2015 年的開發階段,沒有發表任何一篇和空氣盒子相關的論文,直到 2017 年才有正式的論文發表。乍看之下,好像做了四年的白工。但這在中研院是 OK 的!因為信任,讓研究人員有機會去嘗試可能失敗的重要題目,讓我們可以再ㄍㄧㄥ一下、再試一下,這也是身在中研院的好處,我覺得啦。