培養細胞的新技術──「吹泡泡」製作細胞鷹架

為什麼要製作「細胞鷹架」?

中研院物理所的林耿慧副研究員,帶領團隊發明製作「細胞鷹架」,可在三維環境中培養細胞,比二維平面的培養皿更接近生理環境。不僅能藉此了解細胞的物理,也可應用在組織工程、精準醫療等方面。

林耿慧在美國念書的時候,有一個潮流鼓勵物理科學家 (physical scientist) 轉到生物學 (biology) 研究。她研究的「軟物質」領域與生物物理也算接近,生物物理中用了許多軟物質的方法。於是,林耿慧回國後就投入了生物物理的研究。圖│研之有物
林耿慧在美國念書的時候,有一個潮流鼓勵物理科學家 (physical scientist) 轉到生物學 (biology) 研究。她研究的「軟物質」領域與生物物理也算接近,生物物理中用了許多軟物質的方法。於是,林耿慧回國後就投入了生物物理的研究。
圖│研之有物

細胞鷹架──三維的細胞培養環境

物理學家研究細胞?你也許心想,這篇文章是不是「錯頻」了?其實沒有,林耿慧就是研究細胞的物理學家。林耿慧說,大部分的細胞必須貼附在基材上才能存活。一般培養細胞的「基材」就是培養皿,但是培養皿是二維的平面,如果想要養出三維的結構,培養皿做不到。然而,身體內的細胞、組織和器官,都有三維的結構。如何從細胞變成這些有結構的三維組織甚至器官,這是組織工程學家想達到的目的。

真實細胞生長於三維環境,與二維平面(如培養皿)的條件不同。 圖│林耿慧
真實細胞生長於三維空間,與二維平面(如培養皿)的條件不同。
圖│林耿慧

很早以前就有人想到,可以製造一個三維的「鷹架」來培養細胞。許多組織工程學研究試著製作細胞鷹架,不過一直未能培養出一個如在身體內的組織或器官。

林耿慧認為,要成為一個完好的組織,端視細胞與基材、還有細胞與細胞之間作用力協調出來的結構;但因為現今製作細胞鷹架的方式很不均勻,導致鷹架孔洞大小不一,因此很難了解細胞如何與鷹架作用。林耿慧想到了統計力學的這個概念:就算給定一模一樣的能量、溫度條件,還是會有很多的微觀狀態 (microstate) ;那不如創造出很多一模一樣的微環境,去觀察裡面細胞的狀態。「我的想法就是讓全部微環境都一樣,就可以觀察很多狀態。」

發明製作細胞鷹架的「吹泡泡」技術

規則的細胞鷹架該怎麼作呢?有些科學家提出 3D 列印的方法,可惜很難印出夠小的孔洞。那為什麼要做夠小的孔洞呢?

細胞怎麼感覺自己在三維?它沒眼睛,一定是靠觸摸的。

林耿慧說,我們如果沒有眼睛,在一個空間內行走,如果沒有邊緣會覺得自己在二維,除非這個空間有牆,並且尺度跟自己本身的尺度差不多,手腳摸一摸可以觸碰到不同方向的限制,才能夠感覺自己在三維。細胞的尺度大約是 10 到 100 微米大小,因此如果做出類似大小的孔洞,就可以讓細胞生長在三維的環境。

林耿慧的專長,正好是製作小塑膠球,博士論文就是做「膠體粒子」,把幾百奈米到幾 0 微米的小球堆疊成晶體。她想,這是她的老朋友,現在只要把尺度改成 10 微米以上就可以了。

查了文獻,林耿慧發覺她的想法已經被別人發明了。但是,讀完文獻之後,發覺前人的做法並不好,製作過程又慢又貴,自己仍然大有可為。

那個時候,「微流道」剛好發展起來,林耿慧對其研究現況一直有持續掌握。她看到一個方法,是用微流道吹泡泡,尺度剛好和細胞鷹架所需一模一樣,「就是我要的方法!」於是,林耿慧開始在實驗室製作這樣的泡泡。

利用微流道,可以做出大小一樣的泡泡。收集起來,把它背景變成膠,再把孔洞相連通,最後就可以拿來裝細胞。

實驗中通入氣體和液體,利用微流道「吹泡泡」製作細胞鷹架,動態如下圖所示。 圖│林耿慧
實驗中通入氣體和液體,利用微流道「吹泡泡」製作細胞鷹架,動態如下圖所示。
圖│林耿慧

林耿慧用微流道來吹泡泡製作細胞鷹架,實驗相當成功。不但成本很低,製作所需時間也很短,做一個不到一分鐘。並依此申請了專利,也成功技轉,現在這個產品可以在生化試劑最大販賣平台的 Sigma-Aldrich 上買到。

二維與三維環境,培養細胞大不同!

三維的細胞鷹架,有什麼功用呢?不但可以應用於再生醫學、人工敷料,也對精準醫療有所幫助。林耿慧表示,現在化學製藥成本不算太貴了,最貴的是篩藥,而用三維細胞培養來篩藥,應該會有更接近身體內細胞的反應。

一般篩藥是在二維平面進行。在二維平面上篩出有效的藥,最後去做動物實驗常常卻沒有效,原因可能是二維比較不接近生理環境。

林耿慧舉例,1992 年生物學家米納‧碧賽爾 (Mina Bissell) 的團隊,把乳癌細胞養在二維和三維環境來做實驗。他們放了一些抗體進去,發現在三維環境,這些惡性腫瘤細胞可以回復成良性,但在二維環境卻維持惡性。如此一來,傳統在二維的篩藥方法就篩不出來這個藥效。

另外,即使是表皮細胞,乍看之下是平坦的二維結構,但事實上,經常要形成管狀構造才有功能。例如血管、氣管,都需要管狀的細胞。而在二維平面上養細胞,很難養出管狀結構。

三維細胞培養一大瓶頸在於成本。一般三維培養用的材料如水膠,價格昂貴、操作時間又慢,而林耿慧發明的細胞鷹架,突破了這些限制;又經由技轉公司的進一步改良後,操作上和二維培養一樣方便了。

二維培養皿、三維細胞鷹架培養的細胞影像。紅色部分是肌動蛋白 (F-actin),綠色部分是沾黏的纖維組織 (Paxillins)。在二維環境中,細胞呈現平行發展;在三維環境中,細胞長成立體結構。圖│林耿慧
二維培養皿、三維細胞鷹架培養的細胞影像。紅色部分是肌動蛋白 (F-actin),綠色部分是沾黏的纖維組織 (Paxillins)。在二維環境中,細胞呈現平行發展;在三維環境中,細胞長成立體結構。
圖│林耿慧

利用細胞鷹架,研究細胞的物理

製作出細胞鷹架只是第一步。林耿慧利用這樣的鷹架來培養細胞,做了各方面的細胞研究。她用物理方法,來量化細胞的體積、曲率,這是與一般生物學不同之處。

我的研究風格就是影像觀測,然後去量化影像中的特徵。那些東西未必是生物學家會去量的。

林耿慧說,生物學家量化的東西不一樣,例如他們會去量化蛋白質的表現。物理學家則是量化細胞的物理量,例如體積或「看到彎彎的線,就去量化曲率半徑」,因為這與細胞的作用力、能量有關。

量測細胞的形態,其實很困難。我們無法拿尺量測細胞,需要憑藉影像,而光是處理影像就很麻煩。林耿慧團隊突破這些技術困難,獲得一些有趣的發現,找到了一些在二維和三維不同的細胞型態:例如黏著斑尺寸比較小的細胞,其應力纖維也比較細,而黏著斑與應力纖維的分布是環繞整個細胞身體,呈現三維分布。而還有一些尚未發表的結果,皆顯示細胞在三維與二維的不同,團隊後續希望能從細胞力學的角度來解釋這些差異。

生物物理研究:從頭學起

生物物理包含許多跨領域專業,林耿慧團隊實驗成果的背後,其實是艱辛的歷程。

林耿慧笑說:帶領跨領域的實驗室比較累,有時學生來實驗室前沒有足夠的背景「常識」,更不用說非常少學生來實驗室前,就有足夠的背景「知識」。 圖│研之有物
林耿慧笑說:帶領跨領域的實驗室比較累,有時學生來實驗室前沒有足夠的背景「常識」,更不用說非常少學生來實驗室前,就有足夠的背景「知識」。
圖│研之有物

林耿慧說明,因為沒有現成的「生物物理」學系,可以教給學生所需的背景「常識」,所以學生來實驗室都需要從頭學起。有些學生學得快,有些學生會在一些不同領域中應該是常識的細節上出錯,例如:之前曾帶過機械系的學生,不知道將化學樣品加入溶液後要充分混合才能使用,做實驗一直失敗,後來才發現他連配溶液都不會。在團隊裡,擅長養細胞的學生不一定會寫程式,而擅長寫程式的學生不一定會養細胞,因此研究經常要拆開來做,但兩邊要充分溝通,否則細節沒處理好,會造成後面量化的困難。

此外,團隊與生物學家合作,也是不斷磨合的過程。林耿慧談到,物理學和生物學研究的方法學不同:物理學家很多研究是基於觀察的研究,並且習慣「套用理論」來解釋事情;而生物學家的研究方法主要是以「假說檢驗」。偶爾,跨領域合作中,由於彼此不夠了解對方的領域,有時會高估彼此的能力。雖然並非易事,但林耿慧團隊仍持續和生物學家合作,得到了豐碩的研究成果。

從軟物質起家,林耿慧跨入生物的範疇,以物理的方法研究細胞。就像《平面國》一書所傳播的三維福音:「向上,而非向北」,透過細胞鷹架開啟三維的視角,也得以對生命的最小單位有更多探索的空間。

2018-07-29

採訪撰文|歐柏昇
美術設計|張語辰

延伸閱讀

訂閱電子報

立即訂閱研之有物電子報,一起探索這世界